QUES 01:-

Three charges +Q, q, +Q are placed respectively at distance $0, \frac{d}{2}$ and d from the origin on the X-axis. If the net force experienced by +Q placed at x = 0 is zero, then value of q is

(a)
$$\frac{+Q}{2}$$

(a)
$$\frac{+Q}{2}$$
 (b) $\frac{+Q}{4}$ (c) $\frac{-Q}{2}$ (d) $\frac{-Q}{4}$

(c)
$$\frac{-Q}{2}$$

(d)
$$\frac{-Q}{A}$$

Ans - d

SOL:-

The given condition is shown in the figure given below,

Then, according to the Coulomb's law, the electrostatic force between two charges q_1 and q_2 such that the distance between them is (r) given as,

$$F = \frac{1 \cdot q_1 q_2}{4\pi \varepsilon_0 \cdot r^2}$$

.. Net force on charge 'O' placed at origin i.e. at x = 0 in accordance with the principle of superposition can be given as

$$F_{\text{net}} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q \times q}{\left(\frac{d}{2}\right)^2} + \frac{1}{4\pi\epsilon_0} \cdot \frac{Q \times Q}{(d)^2}$$

Since, it has been given that, $F_{\text{net}} = 0$.

$$\Rightarrow \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q \times q}{\left(\frac{d}{2}\right)^2} + \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q \times Q}{\left(d\right)^2} = 0$$

$$\Rightarrow \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q \times q}{\left(\frac{d}{2}\right)^2} = -\frac{1}{4\pi\varepsilon_0} \cdot \frac{Q \times Q}{\left(d\right)^2} \text{ or } q = -\frac{Q}{4}$$